

Problem Set X

Math Course
Due: Date

Instructions

- Write your solutions clearly and legibly.
- Show all work for full credit.
- Collaboration is allowed, but write your own solutions.
- Due at the beginning of class on the due date.

Problems

1. **(10 points)** Let $f(x) = x^3 - 3x^2 + 2x - 1$. Find all critical points and determine their nature (local maximum, local minimum, or neither).
2. **(15 points)** Prove that for all $n \geq 1$:

$$1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

3. **(15 points)** Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Find A^{-1} and verify your answer.
4. **(20 points)** Determine whether the series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$$

Justify your answer.

5. **(20 points)** Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = x^2$.
 - (a) Show that f is continuous at every point.
 - (b) Is f uniformly continuous on \mathbb{R} ? Prove or give a counterexample.
6. **(20 points)** Evaluate the following integral:

$$\int_0^{\pi/2} \frac{\sin(x)}{1 + \cos^2(x)} dx$$

Bonus Problem (Optional)

(10 points) Prove or disprove: If f and g are uniformly continuous functions on \mathbb{R} , then $f \cdot g$ is uniformly continuous on \mathbb{R} .